Unlocking the future of dyslipidemia care and management

Dyslipidaemia is characterised by elevated lipid and lipoprotein levels in the blood, particularly LDL-胆固醇 (also known as ‘bad 胆固醇’). 高水平的LDL-C可急剧增加不良心血管(CV)结果(如冠状动脉疾病)的风险, 中风和心力衰竭.1-3  It is estimated that dyslipidaemia causes 2.全球600万人死亡2,4 and the global burden of disease has been on the rise5

The growing burden of dyslipidemia

血脂异常, or a dysregulation in the levels of circulating lipids in plasma, 是心血管疾病的可改变危险因素,与包括中风和心肌梗死(MI)在内的不良患者预后密切相关。. Of the many manifestations of dyslipidemia, hyper胆固醇aemia is the most common form, 血浆低密度脂蛋白胆固醇(LDL-C)水平从1990年的第15大死亡危险因素上升, 2007年至第11位, 2019年将升至第8位.

通过降低LDL-C治疗来管理血脂异常已经证明可以改善心血管疾病的全球结局, 在初级预防方面, which is to prevent or delay the onset of cardiovascular disease, 并对已知心血管疾病的患者进行二级预防,以降低严重心血管事件的风险.

The mainstay of 胆固醇 lowering: Inhibiting 胆固醇 合成 with statins

改善心血管预后的首要目标之一是提高低密度脂蛋白胆固醇(LDL-C)。,6,7 due to its established role in increased CV risk.1,5  目前的LDL-C水平升高的护理标准(SoC)包括一些降脂剂, 包括他汀类药物, 它们被广泛使用, 有效的, and generally well tolerated.8

Despite widespread use of lipid-lowering therapies, up to 70% of patients do not reach their LDL-C targets under the current SoC.7,9,10  这是由于依从性差和单药治疗往往不够有效等问题. Even among patients 谁 meet LDL-C goals with the current SoC, 40% still experience life threatening CV events, indicating residual risk remains even when low LDL-C levels are achieved. Therefore, the current SoC may not be enough or suitable for every patient.7


目前使用降脂疗法的升级方法是复杂的,对患者和医生来说,在现实世界中遵守治疗计划是很难实现的. 能够优化治疗方案,不需要反复改变剂量,通过多种作用模式的联合策略来降低LDL胆固醇水平,可能有助于改善更多患者的预后.

Jaya Birgitte Rosenmeier Senior Medical Director, CVRM, AstraZeneca

Addressing complementary mechanisms: The potential of statins and PSCK9 inhibition

在胆固醇代谢中,有两种被充分理解和验证的途径被确定为降低LDL-C水平的目标:细胞内 胆固醇 合成 and LDL-receptor (LDL-R) degradation.​8,11 Statins reduce intracellular LDL-C levels by inhibiting a key enzyme involved in 胆固醇 合成.8 While statins address one of the two modes of action involved in LDL-C regulation, 它们的功效各不相同,10 这表明他汀类药物可能不足以将一些患者的LDL-C水平降低到目标水平.7

In addition to statin-targeted intracellular LDL-C 合成, the process of LDL-R recycling and degradation by the protein, PCSK9(蛋白转化酶枯草杆菌素/ keexin 9型)是另一种经过充分验证的机制,可以靶向降低LDL-C水平8,11,12



PCSK9 causes the LDLC/LDLR complex to be sent to the lysosome for degradation.11  通过抑制PCSK9, 细胞表面LDL-R的增加,促进了血液中LDL-C的自然清除,从而促进了溶酶体的降解.11,12 ​

Statins work to reduce total LDL-C levels by inhibiting intracellular LDL-C 合成, while inhibition of PCSK9 can reduce LDL-C levels by increasing LDL-C clearance.8,11,12  ​ Statins also indirectly increase expression of LDL-R and PCSK9​, further increasing the amount of LDL-R on cell surfaces and potential LDL-C clearance.8,13 他汀类药物和PCSK9抑制这两种潜在互补的降LDL-C作用提供了解决多种途径以达到较低LDL-C目标的可能性.7


大, 已知单克隆抗体等可注射生物制剂可有效抑制PCSK9, 但口服小分子PCSK9抑制剂的开发已被证明更为复杂.14 这是因为PCSK9与LDL-R相互作用的位点相对较大且平坦, making small molecule design especially difficult.15

加文·O’mahony Senior Principal Scientist, Early CVRM, AstraZeneca

未来的发展方向

而目前的证据表明,心血管发病率和死亡率的积极转变与低密度脂蛋白降低治疗, 有必要创新和优化血脂异常的治疗方案,以应对越来越多的患者,包括那些患有糖尿病等合并症的患者, 高血压和肥胖, which could put them at greater risk of developing CV disease. 


在过去的几十年中, 澳门葡京赌博游戏提高了对高ldl -胆固醇作为心血管疾病可改变的危险因素的理解和认识. 然而, 澳门葡京赌博游戏需要在这一领域继续创新,以改善那些没有达到ldl -胆固醇目标和仍有主要心血管事件风险的患者的治疗效果.

雷吉娜·弗里切·丹尼尔森 SVP and Head of Early Research and Development, CVRM, AstraZeneca

澳门葡京网赌游戏, 澳门葡京赌博游戏正在加深对血脂异常和心血管疾病等危险因素之间相互联系的理解,以帮助开发新的解决方案. 澳门葡京赌博游戏正在开拓针对已知疾病病理生理学的新方法,并采取以患者为中心的方法,建立在当前SoC的基础上,以解决剩余风险. Where current therapies have their limitations, 澳门葡京赌博游戏希望解决这些障碍,并能够满足未达到指南指导的LDL-C目标水平且仍有心血管疾病风险的患者的需求.


主题:



你可能也喜欢

 参考文献

1. 等. A Modern Approach to 血脂异常. Endocr牧师. 2022;43(4):611-53.

2. 杜震,等. 血脂异常 and Cardiovascular Disease: Current Knowledge, 现有的挑战, and New Opportunities for Management Strategies. 临床医学杂志. 2023;12(1).

3. 李文杰,等. Advances in Treatment of 血脂异常. 生物医学杂志. 2023;24(17).

4. Raised 胆固醇: World Health Organization;  [Available from: http://www.谁.int/data/gho/indicator-metadata-registry/imr-details/3236.

5. Pirillo A等人. Global epidemiology of dyslipidaemias. Nat Rev Cardiol. 2021;18(10):689-700.

6. 张安,等. New Trends in 血脂异常 Treatment. 中国保监会J. 2021;85(6):759-68.

7. Krahenbuhl S等. Unmet Needs in LDL-C Lowering: When Statins Won't Do! 药物. 2016;76(12):1175-90.

8. Stancu C,等. Statins: mechanism of action and effects. J细胞与医学. 2001;5(4):378-87.

9. Ray KK等. 在二级和初级保健中使用脂质修饰疗法的全欧盟横断面观察研究:DA VINCI研究. Eur J Prev Cardiol. 2021;28(11):1279-89.

10. Ridker PM等. 高强度他汀类药物治疗后LDL胆固醇降低百分比:对指南和新出现的降脂药物处方的潜在影响. 欧洲心脏. 2016;37(17):1373-9.

11. Rosenson RS等. The Evolving Future of PCSK9 Inhibitors. 我是科尔·卡迪诺. 2018;72(3):314-29.

12. Kuzmich N,等. PCSK9 as a Target for Development of a New Generation of Hypolipidemic 药物. 分子. 2022;27(2).

13. Mayne J等人. Plasma PCSK9 levels are significantly modified by statins and fibrates in humans. 脂类健康与疾病. 2008;7:22.

14. Libby P,等. Chasing LDL 胆固醇 to the bottom — PCSK9 in perspective. Nat Rev Cardiol. 2022;1:554-61.

15. Suchowerska AK,等. 一本小说, 口服生物利用率, Small-Molecule Inhibitor of PCSK9 With Significant Cholesterol-Lowering Properties In Vivo. J脂质. 2022;63(11):100293.


Veeva ID: Z4-65467
Date of preparation: June 2024